Violympic toán 9

H24

Cho x, y, z dương thỏa mãn xyz = 1. Tìm GTLN:

P = \(\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}+\dfrac{1}{\left(3y+1\right)\left(z+x\right)+y}+\dfrac{1}{\left(3z+1\right)\left(x+y\right)+z}\)

NL
7 tháng 2 2021 lúc 1:00

\(P=\dfrac{1}{3x\left(y+z\right)+x+y+z}+\dfrac{1}{3y\left(z+x\right)+x+y+z}+\dfrac{1}{3z\left(x+y\right)+x+y+z}\)

\(P\le\dfrac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3y\left(z+x\right)+3\sqrt[3]{xyz}}+\dfrac{1}{3z\left(x+y\right)+3\sqrt[3]{xyz}}\)

\(P\le\dfrac{1}{3x\left(y+z\right)+3}+\dfrac{1}{3y\left(z+x\right)+3}+\dfrac{1}{3z\left(x+y\right)+3}\)

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3\left(b^3+c^3\right)+1}+\dfrac{1}{b^3\left(c^3+a^3\right)+1}+\dfrac{1}{c^3\left(a^3+b^3\right)+1}\right)\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{1}{a^3bc\left(b+c\right)+1}+\dfrac{1}{b^3ac\left(a+c\right)+1}+\dfrac{1}{c^3ab\left(a+b\right)+1}\right)\)

\(\Rightarrow P\le\dfrac{1}{3}\left(\dfrac{bc}{a\left(b+c\right)+bc}+\dfrac{ac}{b\left(a+c\right)+ac}+\dfrac{ab}{c\left(a+b\right)+ab}\right)=\dfrac{1}{3}\)

\(P_{max}=\dfrac{1}{3}\) khi \(a=b=c=1\) hay \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
VT
Xem chi tiết
DF
Xem chi tiết
BA
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết