Cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\), Chứng minh rằng:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho x,y,z là các số thực dương thỏa mãn xy + yz + zx = xyz
Chứng minh rằng : \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
cho các số thực dương x, y, z thỏa mãn: x + y + z = 3.
Chứng minh rằng: \(\frac{1}{\sqrt{xy+x+y}}+\frac{1}{\sqrt{yz+y+z}}+\frac{1}{\sqrt{zx+z+x}}\ge\)\(\sqrt{3}\)
cho các số dương x,y,z thỏa mãn xyz=1. Chứng minh rằng \(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{xz}\)
viết các số thực dương x,y,z thỏa mãn xyz=1,chứng minh rằng
\(\sqrt{\dfrac{x^4+y^4+z}{3z^3}}+\sqrt{\dfrac{y^4+z^4+x}{3x^3}}+\sqrt{\dfrac{z^4+x^4+y}{3y^3}}\ge x^2+y^2+z^2\)
Mọi người giúp em với em cần gấp ạ
Cho 3 số \(x,y,z\) thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) , Chứng minh rằng:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+x^3+z^3}}{xz}+\frac{\sqrt{1+y^3+z^3}}{yz}\ge3\sqrt{3}\)