Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z là các số dương thỏa mãn x+y+z=xyz
CMR: \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho x,y,z thỏa mãn x,y,z khác 0 và x+y+z=0. Tính
S=1/x^2+y^2-z^2+1/y^2+z^2-x^2+1/z^2+x^2-y^2
Cho x,y,z thỏa mãn: x,y,z khác 0 và x+y+z=0. Tính:
S=1/x^2+y^2-z^2 + 1/y^2+z^2-x^2 + 1/z^2+x^2-y^2
Cho x,y,z thỏa mãn: x+y+z=xyz và 1/x+1/y+1/z=13
Tính S=1/x^2+1/y^2+1/z^2
Cho x,y,z thỏa mãn x^2+4y+4=0 và y^2+4z+4=0 và z^2+4x+4=0. Tính x^10+y^10+z^10
Cho x,y,z thỏa mãn xyz=1 và x+y+z=1/x + 1/y + 1/z .Tính:(x^2011 -1)(y^5 -1)(z^2012 -1).
Giúp mình nhé!!!!!!
Cho x,y,z thỏa mãn: x+y+z=xyz vf 1/x+1/y+1/z=13
Tính S=1/x^2+1/y^2+1/z^2
Thankssssss các bạn nha!
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
cho x,y,z khác 0 thỏa mãn 1/x + 1/y +1/z =2 và 2/xy - 1/z^2=4
tính D=(x+2y+z)^2018