H24

Cho x, y, z > 0 thỏa mãn xy + yz + zx = 1. Tìm giá trị nhỏ nhất của M = x4 + y4 + z4

MH
3 tháng 7 2017 lúc 15:30

Ta có :

\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)

Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :

\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)

\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )

Dấu "=" xảy ra khi  \(x=y=z=\frac{1}{\sqrt{3}}\)

                 Vậy \(GTNN_M=\frac{1}{3}\) khi  \(x=y=z=\frac{1}{\sqrt{3}}\)

( Ko bít đúng Ko )    :)

Bình luận (0)
H24
5 tháng 7 2017 lúc 10:11

cảm ơn nha

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
DD
Xem chi tiết
PV
Xem chi tiết
HN
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
HN
Xem chi tiết