SL

Cho x , y , z > 0 thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)

Tìm max P = xyz

H24
31 tháng 1 2019 lúc 8:37

Từ \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)

\(\Rightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)          

                    \(=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

C/m tương tự cũng có \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)

                                    \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân 3 vế của các bất đẳng thức trên lại ta được

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow1\ge8xyz\)

\(\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu "='' khi \(x=y=z=\frac{1}{2}\)

Vậy .......

Bình luận (0)
NP
31 tháng 1 2019 lúc 14:49

Đây là môn toán mà!

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
AH
Xem chi tiết
PK
Xem chi tiết
LT
Xem chi tiết
HP
Xem chi tiết