ND

Cho x, y thỏa mãn điều kiện x+y=1 và x>0. Tìm GTLN của biểu thức \(x^2y^3\)

DH
12 tháng 6 2019 lúc 21:13

Nếu \(y\le0\Rightarrow x^2y^3\le0.\)(1)

Nếu \(y>0\)thì :

\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\frac{x}{2}\frac{x}{2}\frac{y}{3}\frac{y}{3}\frac{y}{3}}=5\sqrt[5]{\frac{x^2y^3}{108}}.\)(bất đẳng thức Cauchy)

Suy ra \(\frac{x^2y^3}{108}\le\left(\frac{1}{5}\right)^5\Leftrightarrow x^2y^3\le\frac{108}{3125}\)(2)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{2}{5}\end{cases}.}\)

Từ (1) và (2) suy ra Giá trị lớn nhất của \(x^2y^3=\frac{108}{3125}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}.}\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
HY
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
PQ
Xem chi tiết
PL
Xem chi tiết
SM
Xem chi tiết