cho x,y,z thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\xy+yz+xz=1\end{matrix}\right.\)
chứng minh \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
Cho \(1\le x;y;z\le\frac{4}{3}\)
chứng minh rằng \(xy\sqrt{4-3z}+yz\sqrt{4-3x}+xz\sqrt{4-3y}\le x^3+y^3+z^3\)
Cho x, y,z >0. chứng minh:
\(\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}+\frac{\sqrt{xz}}{y+3\sqrt{yz}}\le\frac{3}{4}\)3/4
cho x;y thuộc R và \(x^2+xy+y^2\le3\)
chứng minh \(-4\sqrt{3}-3\le x^2-xy-3y^2\le4\sqrt{3}-3\)
Cho 3 số không âm x,y,z thỏa mãn điều kiện: x+y+z=1. Chứng minh rằng:
\(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
cho 2soos thựcduongw x, y thỏa mãn:\(x^3+y^4\le x^2+y^3\)
chứng minh rằng: \(x^2+y^3\le x+y^2\)
Cho các số thực không âm x,y thỏa mãn x+y=2
Chứng minh rằng: 2 \(\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
Cho các số thực không âm x, y thỏa mãn x+y=2. Chứng minh rằng: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}\le-2\) biết \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\) và xy>0