PB

Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln x 2 + y .  Tính giá trị nhỏ nhất của  P = x + y

A.  P = 6

B.  P = 3 + 2 2

C.  P = 2 + 3 2

D.  P = 17 + 3

CT
10 tháng 6 2017 lúc 10:36

Đáp án B

Ta có ln x y = ln x + ln y ≥ ln x 2 + y ⇔ x y ≥ x 2 + y ⇔ y x − 1 ≥ x 2

Vì x = 1  không thỏa và y > 0 ⇒ x > 1 ⇒ P = x y ≥ x 2 x − 1 + x = f x

Xét hàm số f x = x 2 x − 1 + x  với  x > 1

⇒ f ' x = x 2 − 2 x x − 1 2 + x = 2 x 2 − 4 x + 1 x − 1 2 → f ' x = 0 ⇔ x = 2 + 2 2  vì  x > 1

Dựa vào bảng biến thiên của hàm số f x  suy ra  ⇒ M i n P = M in x > 1 f x = f 1 = 3 + 2 2

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết