Xét hiệu:
\(x^2+y^2+z^2+3-2\left(x+y+z\right)\)
\(=x^2+y^2+z^2+1+1+1-2x-2y-2z\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) ( luôn đúng)
Suy ra:
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)