Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh các đẳng thức sau
a) (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)= x^5-y^5
b) (x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)= x^5+y^5
c) (a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
Bài 4 : Cho x+y=3 ,xy=2 (x>y). Tính : x2-y2 , x3-y3, x4-y4, x5-y5
Bài 5 : Cho a+b+c=0, a2 + b2 + c2 =1
Tính a) ab+bc+ca
b) a4+b4+c4
1 cho a^2+3b^2=4ab. Tính p=a-b^a+b với a,b khác 0
2 cho x+y=5 và xy=3. Tính A=x^2+y^2 và B= x^3+y^3
3 cho (a+b+c)^2= 3(ab+bc+ca=2019^2.. Tìm a,b,c
4 cho x= 11...15 ; y= 11...19 Chứng minh rằng xy+4 là số chính phương
n chữ số 1 n chữ số 1
BT11: Tìm hiệu A-B biết
\(a,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(b,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
Cho x+y=a và xy=b,tính giá trị của biểu thức
a,x^2+y^2
b,x^3+y^3
c,x^4+y^4
d,x^5+y^2
C/m các hằng đẳng thức sau:
\((x-y)(x^4+x^3y+x^2y+xy^3+y^4)= x^5-y^5\)
\((a+b)(a^3-a^2b+ab^2=b^3)=a^4+b^4\)
a, x^2 - 10x + 16
b, 7x^2 - 9x + 2
c, x^5 - x^4y - xy^4 + y^5
d, x^2 - 6xy + 9y^2 - 100
e, ( x-z) (x+z) - y(2x-y)
g, 25x^2 -y^2 +4y - 4
k, (a+b+c)^3 - a^3 - b^3 - c^3