CE

Cho x + y = 2. Chứng minh rằng xy \(\le\) 1

DV
27 tháng 5 2015 lúc 11:47

Đặt x = 1 + m ; y = 1 - m thì x + y = 1 + m + 1 - m = 2

Ta có xy = (1 + m) . (1 - m) = 1 . (1 - m) + m . (1 - m) = 1 - m + m - m2 = 1 - m2 \(\le\) 1 (vì m2 \(\ge\) 0).

Vậy suy ra điều phải chứng minh (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) x = y = 1)

Bình luận (0)
TT
27 tháng 5 2015 lúc 11:47

X + y = 1 => ít nhất có1 số dương. 
TH1 : 1 dương , 1 âm => xy < 0 < 1 
TH2 : x > 0, y > 0 
Ta có : x + y >= 2 nhân căn của (x.y) 
Suy ra 2 >= 2 nhân căn của ( x.y ) 
Suy ra 1 >= căn của ( x.y ). 
Vây x.y =< 1

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết