LT

Cho: x + y = 1. Tính giá trị của biểu thức: \(B=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

KT
8 tháng 8 2018 lúc 20:08

\(x^2+y^2=\left(x+y\right)^2-2xy=1-2xy\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\)

\(B=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=3-6xy-2+6xy\)

\(=1\)

Bình luận (0)