Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TA

Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)

NK
8 tháng 12 2015 lúc 20:12

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) Với x,y>0                \(x+y\ge2\sqrt{xy}\Rightarrow1\ge2\sqrt{xy}\Rightarrow2xy\le0,5\)

\(N=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}=\frac{4}{\left(x+y^2\right)}+\frac{1}{0,5}=4+2=6\)

Min N = 6 <=> x=y =0,5

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
PD
Xem chi tiết
TH
Xem chi tiết
HG
Xem chi tiết
TD
Xem chi tiết
VK
Xem chi tiết
NC
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết