Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng :
\(\frac{3-\sqrt{10}}{2}\le F=x+2y\le\frac{3+\sqrt{10}}{2}\) trong đó x, y là 2 số thực thỏa mãn \(x^2+y^2=x+y\)
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Cho x, y, z thỏa mãn:
\(\hept{\begin{cases}0\le x,y,z\le1\\2x+y\le2\end{cases}}\)
Chứng minh \(2x^2+y^2\le\frac{3}{2}\)
CMR: bất đẳng thức:
\(\frac{x+y}{x^2-xy+y^2}\le\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
thỏa mãn với mọi x,y thuộc R;x,y khác 0
Cho x;y;z>0. Chứng minh rằng: \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+y^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)\(\frac{1}{z^2}\)
Cho 4 số a,b,x,y thỏa mãn : \(0< a\le x< y\le b\) Chứng minh : \(\left(x+y\right).\left(\frac{1}{x}+\frac{1}{y}\right)\) \(\le\) \(\frac{\left(a+b\right)^2}{ab}\)
Cho x,y thuộc R thỏa mãn x2 + 4y2=1. Chứng minh |x-y| \(\le\) \(\frac{\sqrt{5}}{2}\)
a)Cho x,y,z la các số dương
Chứng minh rằng: \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
b)Cho a,b,c thỏa mãn: a+b+c=0. Chứng minh rằng:\(ab+bc+ca\le0\)