Theo giả thiết \(x+y\le3\to xy+\left(y+4\right)\le y\left(3-y\right)+y+4=-\left(y-2\right)^2+8\le8.\)
Do đó theo bất đẳng thức Cauchy-Schwartz \(\frac{1}{xy}+\frac{9}{y+4}\ge\frac{\left(1+3\right)^2}{xy+y+4}\ge\frac{16}{8}=2.\)
Nhân cả hai vế với \(\frac{2}{3}\) ta suy ra \(\frac{2}{3xy}+\frac{6}{y+4}\ge\frac{4}{3}.\) Dấu bằng xảy ra khi \(y=2,x=1.\) Vậy giá trị bé nhất của \(P\) là \(\frac{4}{3}\).