cho x y z là các số thực dương thỏa mãn x + y + z = 3.Tìm GTLN của A= xy/căn(z2+3) + yz/căn(x2+3) + zx/căn(y2+3)
Cho hai số thực x, y thỏa mãn x 2 + y 2 = 4 và x y = − 3 . Tính giá trị của biểu thức P= x+y
Cho x , y , z là hai số thực thỏa mãn : \(x^2+y^2=4\). Tìm GTLN của : \(A=\frac{xy}{x+y+2}\)
Cho x,y là hai số dương thay đổi thỏa mãn xy=1, tìm gtln của \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x, y là hai số thực thỏa mãn x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1. Chứng minh rằng x 1 + y 2 + y 1 + x 2 = 0.
Cho x,y là hai số dương thỏa mãn \(xy=1\). Tìm GTLN của biểu thức \(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x,y là hai số dương thỏa mãn xy=1. Tính GTLN của:
\(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Cho x ; y là hai số thỏa mãn: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) Tìm GTLN của tích xy
cho hai số thực x,y thỏa mãn điều kiện 0<x<=1; 0<y<=1 và x+y=4xy. Tìm GTLN, GTNN của biểu thức P=x^2+y^2-xy