\(x=\sqrt[3]{4+\sqrt{15}}-\sqrt[3]{4-\sqrt{15}}\)
\(\Rightarrow x^3=4+\sqrt{15}-\left(4-\sqrt{15}\right)-3\sqrt[3]{4+\sqrt{15}}.\sqrt[3]{4-\sqrt{15}}\left(\sqrt[3]{4+\sqrt{15}}-\sqrt[3]{4-\sqrt{15}}\right)\)
\(\Leftrightarrow x^3=2\sqrt{15}-3\sqrt[3]{4^2-\left(\sqrt{15}\right)^2}.x\)
\(\Leftrightarrow x^3=2\sqrt{15}-3x\Leftrightarrow x^3+3x=2\sqrt{15}\)