1 la sai ; 2 cung sai ; xin loi cho ming ting xiu ; aaaaa! 3 la ......................................sai; chan chan 4 la ..............................................................................................d...........................sai ; 1000000000000000000000000000000000000000000000000000000000000000000000000000 la ..................................................................................................sai
x+y+z=0 sao tính được. sửa đề: x+y+z khác 0
Ta có: \(x+y=by+cz+ax+cz=2cz+z\Leftrightarrow2cz=x+y-z\Leftrightarrow c=\frac{x+y-z}{2z}\Leftrightarrow c+1=\frac{x+y+z}{2z}\Leftrightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)
Tương tự, ta có: \(\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right);\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)
Cộng (1),(2),(3) vế với vế ta được:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) hay Q = 2
Vậy Q=2
\(x+y+z=0\) sao tính được, Sửa lại thành: \(x+y+z\)khác \(0\)
Ta có: \(x+y=by+cz+ax+cz=2cz+z\Leftrightarrow2cz=x+y-z\Leftrightarrow c=\frac{x+y-z}{2z}\Leftrightarrow c+1=\)\(\frac{x+y+z}{2z}\Leftrightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\)(1)
Tương tự, ta có: \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)(2)\(;\frac{1}{b+1}=\frac{2y}{x+y+z}\)(3)
Cộng (1); (2); (3) vế với vế ta được:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)hay \(Q=2\)
Vậy \(Q=2\)