H24

Cho x= by+cz , y= ax+cz z= ax +by và x+ +y + z =0 

Tính Q = 1/a+1 + 1/b+1 + 1/c+1

TD
27 tháng 7 2018 lúc 17:01

1 la sai ; 2 cung sai ; xin loi cho ming ting xiu ; aaaaa! 3 la ......................................sai; chan chan 4 la ..............................................................................................d...........................sai ; 1000000000000000000000000000000000000000000000000000000000000000000000000000 la ..................................................................................................sai

Bình luận (0)
ST
27 tháng 7 2018 lúc 17:35

x+y+z=0 sao tính được. sửa đề: x+y+z khác 0

Ta có: \(x+y=by+cz+ax+cz=2cz+z\Leftrightarrow2cz=x+y-z\Leftrightarrow c=\frac{x+y-z}{2z}\Leftrightarrow c+1=\frac{x+y+z}{2z}\Leftrightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)

Tương tự, ta có: \(\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right);\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)

Cộng (1),(2),(3) vế với vế ta được:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) hay Q = 2

Vậy Q=2

Bình luận (0)
H24
31 tháng 8 2018 lúc 15:05

\(x+y+z=0\) sao tính được, Sửa lại thành: \(x+y+z\)khác \(0\)

Ta có: \(x+y=by+cz+ax+cz=2cz+z\Leftrightarrow2cz=x+y-z\Leftrightarrow c=\frac{x+y-z}{2z}\Leftrightarrow c+1=\)\(\frac{x+y+z}{2z}\Leftrightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\)(1)

Tương tự, ta có: \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)(2)\(;\frac{1}{b+1}=\frac{2y}{x+y+z}\)(3)

Cộng (1); (2); (3) vế với vế ta được:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)hay \(Q=2\)

Vậy \(Q=2\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PH
Xem chi tiết
GH
Xem chi tiết
NA
Xem chi tiết
LM
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết
NQ
Xem chi tiết
MH
Xem chi tiết