ta có x2+2y2=x2+y2+y2
áp dụng bất đẳng thức bunhia copxki ta có
(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2
3(x2+2y2) > hoặc = (x+2y)2
3(x2+2y2) > hoặc = 12
3(x2+2y2) > hoặc = 1
x2+2y2 > hoặc = 1/3
vậy gtnn của x2+2y2 là 1/3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ta có x2+2y2=x2+y2+y2
áp dụng bất đẳng thức bunhia copxki ta có
(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2
3(x2+2y2) > hoặc = (x+2y)2
3(x2+2y2) > hoặc = 12
3(x2+2y2) > hoặc = 1
x2+2y2 > hoặc = 1/3
vậy gtnn của x2+2y2 là 1/3
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Cho x+2y=1. Tìm GTNN của B=x2+2y2
Bài 8 : Tìm GTNN của biểu thức:
F= ( x - 1 )2 + ( x - 3 )2
Bài 9 : Tìm GTLN của biểu thức:
A= 4 - x2 + 2x
B= 10x - 23 - x2
C= -x2 + 6x
a) Rút gọn A
b) Với giá trị x;y nguyên dương nào thỏa mãn x + 2y = 14 nhận giá trị nguyên dương.
Mn giúp mik nhé! mik ko làm đc mấy bài này.
cho x,y>0 thỏa mãn x+2y>=5 tìm GTNN của H=x^2+2y^2+1/x+24/y
Cho phân thức A = x2+x+1/x2+2x+1 tìm GTLN
B = x2+x+1/x2+1 tìm GTLN và GTNN
cho x+y=1
tìm GTNN của P=(2x+1/x)^2+(2y+1/y)^2
Cho \(x+2y=1\). Tìm GTNN của \(x^2+2y^2\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y