NA

Cho x> 0 và x# 4, GTNN của biểu thức \(P=\frac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}-\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-4\right)}{\sqrt{x}-2}\)bằng \(\frac{a}{b}\)(với a, b là các số nguyên dương và \(\frac{a}{b}\) là phân số tối giản. Tính a+b?

AH
24 tháng 3 2022 lúc 8:32

Lời giải:

Ta có:

\(P=\frac{\sqrt{x}(\sqrt{x^3}-8)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}\)

\(=\frac{\sqrt{x}(\sqrt{x}-2)(x+2\sqrt{x}+4)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\sqrt{x}(\sqrt{x}-2)-(\sqrt{x}+1)+2(\sqrt{x}+2)\)

\(=x-2\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+4=x-\sqrt{x}+3\)

$=(\sqrt{x}-\frac{1}{2})^2+\frac{11}{4}\geq \frac{11}{4}$ với mọi $x>0; x\neq 4$

$\Rightarrow \frac{a}{b}=\frac{11}{4}$

Vì $a,b$ nguyên dương và $\frac{a}{b}$ tối giản nên $a=11; b=4$

$\Rightarrow a+b=11+4=15$

 

Bình luận (0)