VD

cho tứ giác ABCD nội tiếp đường tròn đường kính AD.hai đường chéo AC vàBD cắt nhau tại E.kẻ EF vuông góc với AD tại F.chứng minh rằng.

A)chứng minh tứ giác dcef nội tiếp được

B) chứng minh tia CA là tia phân giác của góc bcf

DH
28 tháng 4 2021 lúc 21:52

A B C D E F O 1 2 1

a) Xét đường tròn tâm O đường kính AD có \(\widehat{ACD}=90^o\) (góc nội tiếp chắn nửa đường tròn) hay \(\widehat{ECD}=90^o\)

Xét tứ giác DCEF có: \(\widehat{ECD}+\widehat{EFD}=90^o+90^o=180^o\)

=> DCEF là tứ giác nội tiếp

b) Do DCEF là tứ gíc nội tiếp (cmt) => \(\widehat{C_2}=\widehat{D_1}\) (cùng nhìn cạnh EF)

ABCD là tứ giác nội tiếp => \(\widehat{C_1}=\widehat{D_1}\) (cùng nhìn cạnh AB)

=> \(\widehat{C_1}=\widehat{C_2}\left(=\widehat{D_1}\right)\) => CA là tia phân giác góc BCF

Bình luận (0)