Cho tứ diện ABCD có AB=BC=AC=BD=2a, AD= a 3 ; hai mặt phẳng (ACD) và (BCD) vuông góc với nhau. Diện tích mặt cầu ngoại tiếp tứ diện ABCD bằng
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: ∠ BAC = 90 °
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: ∠ BAC = 120 ° và b = c
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: ∠ BAC = 60 ° và b = c
Cho tứ diện A B C D có DA vuông góc với mặt phẳng ( A B C ) và A D = a , A C = 2 a , cạnh BC vuông góc với AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện A B C D .
Cho tứ diện ABCD có DA vuông góc với (ABC) và AD = a, AC = 2a; cạnh BC vuông góc với cạnh AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện ABCD.
A. r = a 5
B. r = a 3 2
C. r = a
D. r = a 5 2
Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA = 2a. Gọi I là trung điểm của AB. Thể tích của khối cầu ngoại tiếp tứ diện S.AICD là
A. πa 3 6
B. πa 3 3
C. πa 3 5
D. Đáp án khác
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc ∠ A B C = 60 ° , cạnh bên SA=a và vuông góc với mặt đáy. Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ACD.
A. R = a 5 2
B. R = a
C. R = a 7 12
D. R = a 2
Cho tứ diện ABCD có các cạnh AB,AC, AD vuông góc với nhau từng đôi một và AB=3a, AC=6a, AD=4a. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CD, BD. Tính thể tích khối đa diện AMNP.