Ta có:
I = DE ∩ AB
DE ⊂ (DEF) ⇒ I ∈ (DEF)
AB ⊂ (ABC) ⇒ I ∈ (ABC)
Lí luận tương tự thì J, K cũng lần lượt thuộc về hai mặt phẳng trên nên I, J, K thuộc về giao tuyến của (ABC) và (DEF) nên I, J, K thẳng hàng.
Ta có:
I = DE ∩ AB
DE ⊂ (DEF) ⇒ I ∈ (DEF)
AB ⊂ (ABC) ⇒ I ∈ (ABC)
Lí luận tương tự thì J, K cũng lần lượt thuộc về hai mặt phẳng trên nên I, J, K thuộc về giao tuyến của (ABC) và (DEF) nên I, J, K thẳng hàng.
Cho tứ diện S.ABCD . Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB ; LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC; SC lần lượt tại K; I; J. Ba điểm nào sau đây thẳng hàng
A. K; I; J
B. M; I; J
C. N; I; J
D. M; K; J
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C'cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I.
a) Chứng minh ba điểm I, J, K thẳng hàng.
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF).
Cho tứ diện S.ABC có D, E lần lượt trung điểm AC, BC và G là trọng tâm tam giác ABC. Mặt phẳng (α) qua AC cắt SE, SB lần lượt tại M, N. Một mặt phẳng (β) qua BC cắt SD và SA lần lượt tại P và Q.
a) Gọi I = AM ∩ DN, J = BP ∩ EQ. Chứng minh bốn điểm S, I, J, G thẳng hàng.
b) Giả sử AN ∩ DM = K, BQ ∩ EP = L. Chứng minh ba điểm S, K, L thẳng hàng.
Cho hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến d. Trong (α) lấy hai điểm A và B sao cho AB cắt d tại I. O là một điểm nằm ngoài (α) và (β) sao cho OA và OB lần lượt cắt (β) tại A’ và B’.
a) Chứng minh ba điểm I, A’, B’ thẳng hàng.
b) Trong (α) lấy điểm C sao cho A, B, C không thẳng hàng. Giả sử OC cắt (β) tại C’, BC cắt B’C’ tại J, CA cắt C’A’ tại K. Chứng minh I, J, K thẳng hàng.
Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.
a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.
b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).
c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.
d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.
e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.
Cho hình chóp S.ABCD có đáy là một hình thang với đáy AD và BC. Biết AD= a; BC= b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng ( ADJ) cắt SB ; SC lần lượt tại M ; N . Mặt phẳng ( BCI) cắt SA; SD tại P; Q. Giả sử AM cắt BP tại E; CQ cắt DN tại F. Tính EF theo a; b.
A. 1 3 a + b
B. 2 3 a + b
C. 2 5 a + b
D. 3 5 a + b
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy là AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q.
a) Chứng minh MN song song với PQ.
b) Giả sử AM cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b.
Cho tứ diện SABC. Gọi K; N trung điểm SA và BC. M là điểm thuộc đoạn SC sao cho: 3SM = 2MC. Gọi E là giao điểm của AC và KM; NE cắt AB tại I. Tìm khẳng định đúng?
A. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNK và I A I B = 2 3
B. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNK và I A I B = 1 3
C. thiết diện của hình chóp cắt bởi mp ( MNK) là tứ giác MNIK và I A I B = 2 3
D. thiết diện của hình chóp cắt bởi mp ( MNK) là tam giác MNE và I A I B = 2 3
Cho hình chóp S.ABC. Trên các cạnh SA, SB, SC lần lượt lấy các điểm D, E, F (khác S). Gọi M là điểm chung của ba mặt phẳng (ABF), (BCD), (CAE). Đường thẳng SM lần lượt cắt các mặt phẳng (ABC) và (DEF) tại P và N. Chứng minh rằng \(\dfrac{NP}{NS}=3.\dfrac{MP}{MS}\)