PB

Cho tứ diện đều ABCD. Biết khoảng cách từ điểm A đến mặt phẳng (BCD) bằng 6. Tính thể tích của tứ diện ABCD 

A. V = 27 3

B. V = 5 3

C. V = 27 3 2

D. V = 9 3 2

CT
18 tháng 3 2019 lúc 9:58

Đáp án A

Gọi H là hình chiếu của điểm A trên mặt phẳng(BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp  Δ B C D .

Đặt cạnh của tứ diện là a. Gọi M  là trung điểm của CD.

Do Δ B C D  đều nên

B M = a 3 2 ⇒ B H = 2 3 B M = 2 3 . a 3 2 = a 3 3

Ta có   Δ A B H vuông tại H nên

A H = A B 2 − B H 2 = a 2 − a 3 3 2 = a 6 3

Từ giả thiết ta có

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvdt).

Vậy thể tích của tứ diện ABCD là

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvtt).

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết