Chọn mp(ABD) chứa đường thẳng IJ
=>BD là giao tuyến của (BCD) và (ABD)
Gọi giao của IJ và BD là M
=>M là giao điểm của IJ và (BCD)
Chọn mp(ABD) chứa đường thẳng IJ
=>BD là giao tuyến của (BCD) và (ABD)
Gọi giao của IJ và BD là M
=>M là giao điểm của IJ và (BCD)
Cho hình chóp A.ABCD có đáy là hình thang (đáy lớn AD). Gọi O là giao điểm của AC và BD, I và J lần lượt là trung điểm của SB và SC
a) Xác định giao điểm M của AI và (SCD)
b) Chứng minh IJ // (SAD)
c) Xác định thiết diện của hình chóp cắt bởi mp(P) qua I, song song với DS và AC
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Xác định các giao điểm B', C', D' ?
Cho tứ diện ABCD lấy I, J lần lượt là trung điểm của AB, AD. Đường thẳng I J song song với mặt phẳng nào?
Cho hình hộp ABCD. A'B'C'D'. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC' sao cho \(\dfrac{AM}{MD}=\dfrac{CN}{NC'}\)
a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB')
b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB')
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Gọi I, J lần lượt là giao điểm của ME với CB và MF với CD. Chứng minh ba điểm I, A, J thẳng hàng ?
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD. Mặt phẳng (P) cắt SB, SD lần lượt tại E và FF. Hãy xác định các điểm E, F ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Chứng minh :
\(\dfrac{MB'}{AB}+\dfrac{MC'}{AC}+\dfrac{MD'}{AD}=1\)
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'.
Tìm giá trị lớn nhất của biểu thức :
\(\dfrac{MB'}{AB}.\dfrac{MC'}{AC}.\dfrac{MD'}{AD}\)