PB

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.

a) Tìm giao điểm A’ của đường thẳng AG và mp(BCD).

b) Qua M kẻ đường thẳng Mx song song với AA’ và Mx cắt (BCD) tại M’.

c) Chứng minh GA = 3GA’

CT
18 tháng 6 2019 lúc 9:52

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Có: MN ⊂ (ABN)

⇒ G ∈ (ABN)

⇒ AG ⊂ (ABN).

Trong (ABN), gọi A’ = AG ∩ BN.

⇒ A’ ∈ BN ⊂ (BCD)

⇒ A’ = AG ∩ (BCD).

b) + Mx // AA’ ⊂ (ABN) ; M ∈ (ABN)

⇒ Mx ⊂ (ABN).

M’ = Mx ∩ (BCD)

⇒ M’ nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.

⇒ B; M’; A’ thẳng hàng.

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ BM’ = M’A’ = A’N.

c) Áp dụng chứng minh câu b ta có:

ΔMM’N có: MM’ = 2.GA’

ΔBAA’ có: AA’ = 2.MM’

⇒ AA’ = 4.GA’

⇒ GA = 3.GA’.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
MS
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết