PB

Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.

a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.

b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.

CT
25 tháng 8 2017 lúc 11:18

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết