PB

Cho tứ diện ABCD có DA vuông góc với (ABC) và AD = a, AC = 2a; cạnh BC vuông góc với cạnh AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện ABCD.

A.  r = a 5

B. r = a 3 2

C. r = a

D.  r = a 5 2

CT
31 tháng 8 2018 lúc 16:03

Đáp án D

Phương pháp:

+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.

+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.

Cách giải:

Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC

Gọi I là trung điểm của CD ⇒ IC = ID(1)

Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD

Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)

Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC

⇒ IA = IB = IC(2)

 

Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết