Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NM

Cho tổng gồm 2014 số hạng:      S= 1/4 + 2/4+ 3/4+ 4/4+ ... + 2014/42014

Chứng mih rằng: S < 1

TL
25 tháng 4 2015 lúc 21:52

=>  \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)

=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.S =  \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)

=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}

Bình luận (0)
TL
25 tháng 4 2015 lúc 22:20

Nếu là 1/2 thì ta so sánh 4/9 < 4/8 = 1/2 => S < 1/2

Bình luận (0)
LT
13 tháng 8 2017 lúc 16:05

Sao an loan luc lam S luc lam A vay? Do hoi chang?

Bình luận (0)
BL
23 tháng 3 2018 lúc 20:48

Luong Huyen Trang ơi, cái đó là đặt đấy 

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
DK
Xem chi tiết
TT
Xem chi tiết
DM
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
BL
Xem chi tiết
LD
Xem chi tiết
TT
Xem chi tiết