Tính
A = 1 + 2 + 3 + 4 + ... + 100
Sau đó nêu ra cách tính tổng quát :
A = 1 + 2 + 3 + 4 + ... + n với n thuộc N* ; n > 2 hoặc n = 2
Tính các tổng sau:
a) S1 = 1+a2+a4+a6+....+a2n, với ( a > hoặc = 2, n thuộc N)
b) S2 = a+a3+a5+.......+a2n+1, với (a > hoặc = 2, n thuộc N*)
1. Chứng tỏ rằng M là số chính phương biết rằng :
M = 1 + 3 + 5 ... + [2n -1] [với n thuộc N]
2. Tính tổng :
a) A = 1^2 + 2^2 + 3^2 + ... + 10^2
b) Tính theo cách hợp lí tổng :
B= 5^2 + 10^2 + 15^2 + ... + 50^2
3. Tìm n thuộc N biết :
a) 4^n = 256
b) 6^20 . 6^4n = 6^200
Cho dãy số a1, a2,a3,......, an xác định như sau : an = 6n-3 với n thuộc N và n>9
a) Tính tổng 17 số đầu tiên của dãy
b) Tích 100 số bất kì của dãy có chia hết cho 399 không ?
a)Tính n thuộc N để n2 +2n+3 chia hết cho n+1
b)Tìm UwCLN(21n+3,7n+2) với n thuộc N
1. a) Tính tổng :
D = 1.2 + 2.3+ 3.4 +...+ 99.100
b) Chứng minh:
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
= n (n + 1) . (n + 2) : 3 ( với n thuộc N*)
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
Cho tổng S= a+a^2+a^3+a^4+...+a^n (n thuộc N)
Với giá trị nào của n thì S chia hết cho a+1