NN

Cho tỉ lệ thức:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

Trong đó \(b\ne0.\)Chứng minh rằng c=0

H24
28 tháng 7 2019 lúc 17:30

#)Giải :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\Rightarrow c+c=0\Rightarrow c=0\left(đpcm\right)\)

Bình luận (0)
H24
28 tháng 7 2019 lúc 17:36

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=1\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)(đpcm)

Bình luận (0)
H24
12 tháng 6 2020 lúc 22:12

Ta có:\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}\)\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)(T/c dãy TSBN)

\(\Rightarrow a+b+c=a+b-c\)

\(\Leftrightarrow c=-c\)

\(\Leftrightarrow2c=0\)

\(\Rightarrow c=0\left(đpcm\right)\)

Vậy...

Matcha

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PD
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
TL
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết
TD
Xem chi tiết