NL

Cho tỉ lệ thức: \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b # 0. Chứng minh rằng c = 0

LC
30 tháng 7 2015 lúc 20:16

Sử dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

=>\(\frac{a+b+c}{a+b-c}=1\)

=>a+b+c=a+b-c

=>c+c=a+b-a-b

=>2c=0

=>c=0

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
BS
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
TF
Xem chi tiết