\(\frac{a}{b}=\frac{c}{d}\\ =>ad=bc\)
(a+2c)(b+d)=a(b+d)+2c(b+d)
=ab+ad+2bc+2cd
=ab+ad+2ad+2cd (bc=ad nên thay vào)
=ab+3ad+2cd (1)
tương tự
(a+c)(b+2d)=ab+2ad+cb+2cd
=ab+3ad+2cd (2)
Từ (1) và (2)
=>(a+2c)(b+d)=(a+c)(b+2d)
\(\frac{a}{b}=\frac{c}{d}\\ =>ad=bc\)
(a+2c)(b+d)=a(b+d)+2c(b+d)
=ab+ad+2bc+2cd
=ab+ad+2ad+2cd (bc=ad nên thay vào)
=ab+3ad+2cd (1)
tương tự
(a+c)(b+2d)=ab+2ad+cb+2cd
=ab+3ad+2cd (2)
Từ (1) và (2)
=>(a+2c)(b+d)=(a+c)(b+2d)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\) chứng minh tỉ lệ thức sau
Chứng minh ràng nếu ta có tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\) nếu có một trong các đẳng thức sau:
a) \(\frac{2a+b}{a-2b}\)= \(\frac{2c+d}{c-2d}\).
b)( a+ 2c)( b- d)=( a- c)( b+ 2d).
( Giả thiết các tỉ lệ thức trên đều có nghĩa).
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
C/m(a+2c)(b+d)=(a+c)(b+2d)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR : (a + 2c).(b+d) = (a+c).(b+2d)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh: \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng (a+2c).(b+d)=(a+c).(b+2d)
Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng (a+2c).(b+d)=(a+c).(b+2d)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh \(\frac{a}{2c}\)=\(\frac{b}{2d}\)