Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì \(a=kb;c=kd\)
Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\) (1)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\)
\(=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)