^^

Cho tỉ lệ thức a/b=c/d

Chứng minh rằng ac/bd=a^2+c^2/b^2+d^2

 

H24
27 tháng 6 2019 lúc 8:26

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì \(a=kb;c=kd\)

Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)    (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\)

\(=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\)    (2)

Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
ZZ
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết