Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HA

cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác o. Chứng minh c=0

 

XO
9 tháng 7 2021 lúc 9:55

Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)

Khi đó a + b + c = a + b - c 

<=> c = - c

<=> 2 x c = 0

<=> c = 0(đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa
HQ
9 tháng 7 2021 lúc 10:01

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)

\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)

\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)

\(-2bc=2bc\)

mà \(b\ne0\)

thì \(-2bc;2bc\)trái dấu 

vậy để \(-2bc=2bc\)thì \(c=0\)

\(< =>ĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NQ
Xem chi tiết
TH
Xem chi tiết
LT
Xem chi tiết
BS
Xem chi tiết
TH
Xem chi tiết
LD
Xem chi tiết
DA
Xem chi tiết
DN
Xem chi tiết
NH
Xem chi tiết