NT

Cho tỉ lệ thức a/b = c/d. Chứng minh rằng ac/bd = a2 + c2/b2 + d2

IY
29 tháng 7 2018 lúc 21:46

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Bình luận (0)
NT
29 tháng 7 2018 lúc 21:54

Thanks  bạn nhé

Bình luận (0)
GG
30 tháng 7 2018 lúc 9:46

Ta co : a/b = c/d => a2/b2 = c2/d2 = ac/bd (*)

ma a2/b= c2/d= a2 + c2/ b+ d

Tu (*) ac/bd = a2 + c2/b2 + d2 (dpcm)

Hok tot !!!

Bình luận (0)
OO
2 tháng 9 2018 lúc 14:28

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
H24
18 tháng 11 2018 lúc 16:38

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
DX
Xem chi tiết
NT
Xem chi tiết
DF
Xem chi tiết
NT
Xem chi tiết