PB

Cho tập X = { 1;2;3;4;5 }. Viết ngẫu nhiên lên bảng hai số tự nhiên, mỗi số gồm 3 chữ số đôi một khác nhau thuộc tập X. Tính xác suất để trong hai số đó có đúng một số có chữ số 5

A.  12 25

B. 12 23

C.  21 25

D.  21 23

CT
16 tháng 5 2018 lúc 3:09

Số các số tự nhiên có 3 chữ số đôi một khác nhau thuộc tập X là: 5.4.3 = 60.

Trong đó số các số không có mặt chữ số 5 là 4.3.2 = 24 và số các số có mặt chữ số 5 là 60 - 24 = 36.

Gọi A là biến cố hai số được viết lên bảng đều có mặt chữ số 5; B là biến cố hai số được viết lên bảng đều không có mặt chữ số 5.

Rõ ràng AB xung khắc. Do đó áp dụng quy tắc cộng xác suất ta có:

P A ∪ B = P A + P B = C 36 1 . C 36 1 C 60 1 . C 60 1 + C 24 1 . C 24 1 C 60 1 . C 60 1 = 13 25

Vậy xác suất cần tìm là 

P = 1 - P A ∪ B = 1 - 13 25 = 12 25

Đáp án A

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết