1.Cho A={1;2;3;4;5}.Chia A thành 2 tập con. Chứng minh rằng trong một tập con luôn tìm được hai số có hiệu bằng một số thuộc tập đó.
2.Cho X={1;2;3;4;5;6;7;8;9}. Chứng minh rằng với mọi cách chia X thành hai tập con, luôn tồn tại một tập con chứa ba số sao cho tổng của hai số bằng số thứ ba.
Cho a,b \(\in\) N* sao cho a + b là 1 số lẻ. Chia tập hợp các số nguyên dương thành 2 tập rời nhau. Chứng minh rằng luôn tồn tại 2 phần tử x,y cùng thuộc 1 tập sao cho x - y = { a ; b }
hãy tìm số cách phân chia tập hợp X gồm 6 phần tử thành 2 tập con rời nhau ( giao của tập con bằng rỗng) mỗi tập có 3 phần tử
Một tập hợp các số nguyên dương được gọi là tập hương nếu tập hợp đó có ít nhất 2 phần tử và mỗi phần tử của nó đều có ước nguyên tố chung với ít nhất một trong các phần tử còn lại . Đặt P(n)=n2+n+1. Hãy tìm số nguyên dương b nhỏ nhất sao cho tồn tại số không âm a để tập hợp {P(a+1);P(a+2);...;P(a+b)} là tập hương.
Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).
Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S.
Đề toán yêu cầu:
a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.
b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
Chứng minh rằng qua mỗi điểm có không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
Chứng minh rằng tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
6. Cho tập hợp \(X=\left\{1;\sqrt{2};\sqrt{3};...;\sqrt{2012}\right\}\)
Chứng minh rằng Trong 45 số khác nhau bất kì được lấy từ X luôn tồn tại 2 số a và b sao cho |a-b|<1
Chờ X =(0;1;2;.100). Giả sử X là tập hợp số nguyên có 51 phần tử không lớn hơn 100 và không âm, khác nhau từng đôi một
a, Cmr có 2 phần tử trong tập hợp X có tổng bằng 101
b,Cmr có hai số trong tập này hơn kém nhau 50 đơn vị
c,Cmr trong tập X có chứa một số là bội của vài số còn lại
a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.
b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.
cho tập A có 2018 phần tử. có bao nhiêu tập con khác rỗng không giao nhau của tập hợp A