\(A=\left\{x\in Z/\frac{3x+8}{x+1}\in Z\right\}\)
Ta có: \(\frac{3x+8}{x+1}=3+\frac{5}{x+1}\)
\(\Leftrightarrow\frac{5}{x+1}\in Z\Rightarrow5⋮x+1\)
\(\Rightarrow\) x + 1 là ước nguyên của 5
\(\Rightarrow x=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=4\\x=-6\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-2;4;-6\right\}\)
b) Tập con của A chứa 3 phần tử:
\(\left\{0;-2;4\right\};\left\{0;4;-6\right\};\left\{-2;4;6\right\}\)
c) tập con của A chứa phần tử 0 và không chứa các Ư(6) là: \(\left\{0\right\};\left\{0;4\right\}\)