Bài 2: Hoán vị, chỉnh hợp, tổ hợp

LC

Cho tập hợp A gồm n phần tử \(\left(n\ge4\right)\). Biết rằng số tập hợp con gồm 4 phần tử của A bằng 20 lần số tập hợp con gồm 2 phần tử của A. Tìm  \(k\in\left[1,2,.....,n\right]\) sao cho số tập con gồm k phần tử của tập hợp A là lớn nhất.

 

VH
24 tháng 4 2016 lúc 16:55

Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)

\(C_{18}^k\left(k=1,.....,18\right)\)

Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :

\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)

\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)

\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)

\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)

\(\Leftrightarrow17>2k\)

\(\Leftrightarrow k< \frac{17}{2}\)

Điều kiện (*) nên k = 1,2,3,.....8

Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17

Vậy ta có 

\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)

Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
KT
Xem chi tiết
JE
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết