Cho tập E = {1;2;3;4;5;6}. Có bao nhiêu số tự nhiên gồm 6 chữ số mà các chữ số đều thuộc E, đồng thời chữ số nào mà xuất hiện thì xuất hiện đúng hai lần?
A. 14.400 (số)
B. 12.000 (số).
C. 9.600 (số)
D. 10.800 (số).
Từ các chữ số 1,2,3,4 ta có thể tạo thành bao nhiêu số tự nhiên gồm 6 chữ số, trong đó chữ số 1 xuất hiện đúng 3lần, ba chữ số 2,3,4 hiện diện đúng 1 lần.
A. 120
B. 24
C. 360
D. 384
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có 8 chữ số, trong đó chữ số 1 và chữ số 6 có mặt đúng 2 lần còn các chữ số khác xuất hiện 1 lần.
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số:Có 8 chữ số trong đó chữ số 1có mặt 3 lần, chữ số 4 xuất hiện 2 lần; các chữ số còn lại có mặt đúng một lần.
A. 1200
B. 6480
C. 2940
D. Tất cả sai
Gọi S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6 là
A . 2 5
B . 11 12
C . 4 5
D . 55 432
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm bảy chữ số, trong đó chữ số 2 xuất hiện đúng ba lần.
A.31203
B.30240
C.31220
D. 32220
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2,3, 4 trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S . Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau
A.0,2.
B. 1 3
C. 1 6
D.0,3.
Cho tập A = {3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
A. 24
B. 30
C. 102
D. 360
Cho E là tập các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các số 0; 1; 2; 3; 4; 5; 6. Tính xác suất để chọn ngẫu nhiên từ E được một số có dạng a b c d e f ¯ sao cho a + b + c + d = e + f
A . 1 90
B . 4 135
C . 8 225
D . 5 138