\(A=\cot\alpha+\frac{\sin\alpha}{\sin\alpha+\cos\alpha}=\cot\alpha+\frac{1}{1+\cot\alpha}=\frac{1}{\tan\alpha}+\frac{1}{1+\frac{1}{\tan\alpha}}=\frac{1}{2}+\frac{1}{1+\frac{1}{2}}=\frac{7}{6}\)
\(A=\cot\alpha+\frac{\sin\alpha}{\sin\alpha+\cos\alpha}=\cot\alpha+\frac{1}{1+\cot\alpha}=\frac{1}{\tan\alpha}+\frac{1}{1+\frac{1}{\tan\alpha}}=\frac{1}{2}+\frac{1}{1+\frac{1}{2}}=\frac{7}{6}\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
a) Biết \(\sin\alpha=\frac{2}{5}\) hãy tính \(\cos\alpha,\tan\alpha,\cot\alpha\)
b) Biết \(\tan\alpha=\frac{12}{35}\)hãy tính \(\sin\alpha,\cos\alpha,\cot\alpha\)
CMR: \(\frac{\sin^2\alpha}{\cos\alpha\left(1+\tan\alpha\right)}-\frac{\cos^2\alpha}{\sin\alpha\left(1+\cot\alpha\right)}=\sin\alpha-\cos\alpha\)
1) Cho: \(\tan\alpha=\frac{1}{2}\). Tính \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)
2) Cho: \(\cos\beta=2\sin\beta.\) Hãy tính: \(\sin\beta.\cos\beta\)
3)Chứng minh hệ thức:
a/ \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b/ \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos\alpha\)
Chứng minh giá trị các biểu thức sau luôn là hằng số với mọi góc nhọn \(\alpha\)
\(a.\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\)
\(b.\cos^2\alpha+\sin^2\alpha+\tan^2\alpha\cdot\cos^2\alpha+\cot^2\alpha\cdot\sin^2\alpha\)
Cho \(\tan\alpha+\cot\alpha=3\)Tính giá trị của \(A=\sin\alpha.\cos\alpha\)