\(tan\alpha=2\sqrt{2}\Rightarrow cot\alpha=\frac{1}{2\sqrt{2}}\Rightarrow cot^2\alpha=\frac{1}{8}\Rightarrow1+cot^2\alpha=1+\frac{1}{8}=\frac{9}{8}\). Áp dụng công thức
\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)(bạn tự chứng minh bằng cách vận dụng định nghĩa các tỉ số lượng giác trong tam giác vuông).
\(\Rightarrow sin^2\alpha=\frac{1}{1+cot^2\alpha}=\frac{1}{\frac{9}{8}}=\frac{8}{9}\Rightarrow sin\alpha=\frac{2\sqrt{2}}{3}\)