Chương II - Đường tròn

HT

Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. M là trung điểm BC. Kẻ đường kính AP của (O).

a) Chứng minh: BHCP là hình bình hành.

b) Tia MH cắt (O) tại T, chứng minh: T, A, E, H, F đồng viên (nghĩa là cùng thuộc một đường tròn).

c) Chứng minh: AH=2OM

d) G là trọng tâm tam giác ABC, chứng minh: O, G, H thẳng hàng

Mọi người giúp em với e cần gấp ạ,mà mọi người chủ yếu làm cho em câu B thôi nha vì mấy câu còn lại em biết làm rồi (Câu B nếu dùng tứ giác nội tiếp thì cũng được nhưng mà mọi người làm được cách khác thì tốt nha ).Hình vẽ với gợi ý em để ở dưới ạ

NL
25 tháng 7 2021 lúc 20:43

b.

Do AP là đường kính \(\Rightarrow\)góc \(\widehat{ATP}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ATP}=90^0\) hay \(\widehat{ATH}=90^0\)

\(\Rightarrow\) 3 điểm T, E, F cùng nhìn AH dưới 1 góc vuông nên T, E, F cùng thuộc đường tròn đường kính AH

Hay 5 điểm đã cho đồng viên

Bình luận (1)
HT
25 tháng 7 2021 lúc 20:23

undefined

Bình luận (2)