DL

cho tam giác vuông ABC ( \(\widehat{A}\)= 90 độ) có AB=12cm, AC=16cm. Tia phân giác góc A cắt BC tại D.

a) Tính tỉ số diện tích 2 tam giác ABD và ACD.

b) Tính độ dài cạnh BC của tam giác.

c)Tính độ dài các đoạn thẳng BD và CD.

d) Tính chiều cao AH của tam giác.

thanks!!

NT
24 tháng 4 2017 lúc 1:29

A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)

=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm

=> DC = \(\frac{80}{7}\)cm.

Kẻ DE vuông góc với AC 

DE vuông góc với AC và AB vuông góc với AC => DE song song với AB 

áp dụng hệ quả của định lý Ta-let,ta có; 

\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm

Diện tích tam giác ACD:  S\(_{ACD}\)\(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)

Diện tích tam giác ABD:  S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)\(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)\(\frac{288}{7}\)cm\(^2\)

Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)

Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm

BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)

Chiều cao AH : S\(_{ABC}\)\(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
MT
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết