Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA
b) Chứng minh: \(AH^2\)=HB.HC
c) Tính độ dài các cạnh BC, AH
d) Phân giác của góc ABC cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
( Vẽ hình nữa nha)
a)
Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\RightarrowĐpcm\)
b)
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)
Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)
c)
Áp dụng định lí Pytago trong tam giác vuông, ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì \(\Delta ABC\) đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\left(cm\right)\)
Vậy \(BC=10\left(cm\right);AH=4,8\left(cm\right)\)