Lời giải:
$\widehat{H}+\widehat{M}=180^0-\widehat{A}=180^0-60^0=120^0(1)$
Do $\triangle SQP=\triangle HAM$ nên:
$\widehat{S}=\widehat{H}; \widehat{P}=\widehat{M}$
$\Rightarrow 3\widehat{H}=5\widehat{M}(2)$
Từ $(1); (2)$ suy ra:
$\frac{\widehat{H}}{\frac{1}{3}}=\frac{\widehat{M}}{\frac{1}{5}}=\frac{\widehat{H}+\widehat{M}}{\frac{1}{3}+\frac{1}{5}}=\frac{120^0}{\frac{8}{15}}=225^0$
$\Rightarrow \widehat{H}=225^0.\frac{1}{3}=75^0; \widehat{M}=225^0.\frac{1}{5}=45^0$
Có:
$\widehat{S}=\widehat{H}=75^0$
$\widehat{P}=\widehat{M}=45^0$