Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

SK

Cho tam giác nhọn ABC, M là trung điểm của BC. Đường vuông góc với AB tại B cắt đường thẳng AM tại D. Trên tia AM lấy điểm E sao cho ME = MD.

Chứng minh rằng CE vuông góc với AB ?

TT
11 tháng 6 2017 lúc 15:20

Xét \(\Delta BMD \)\(\Delta CME \) có:

ME = MD (gt)

BM = CM ( vì M là trung điểm của BC)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

Do đó: \(\Delta BMD \) = \(\Delta CME \) (c.g.c)

=> \(\widehat{BDM}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc \(\widehat{BMD}\)\(\widehat{MEC}\)nằm ở vị trí so le trong

=> BD // CE.

Ta có:\(AB\perp BD\) , BD // CE

=> AB \(\bot\) CE.

Bình luận (1)
NH
7 tháng 7 2017 lúc 10:12

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NA
Xem chi tiết
BT
Xem chi tiết
PY
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
TV
Xem chi tiết
BL
Xem chi tiết