bạn tự vẽ hình nhé ^.^
từ B kẻ BH vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)
ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)
thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)
bạn tự vẽ hình nhé ^.^
từ B kẻ BH vuông góc với AC \(\Rightarrow SABC=\frac{1}{2}AC\cdot BH\)(1)
ap dung ti so luong giac trong tam giac ABH co \(BH=sinA\cdot AB\)
thay vao(1) ta co \(SABC=\frac{1}{2}AB\cdot AC\cdot sinA\left(DPCM\right)\)
Cho tam giác ABC nhọn. Cm: \(BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A\)
Cho tam giác ABC vuông tại A có AB=c, BC=a, AC=b, đường cao AH. Lấy D nằm giữa A và C. Kẻ DE vuông góc với BC.
Chứng minh: \(\sin B=\frac{AB\cdot AD+EB\cdot ED}{BA\cdot BE+DA\cdot DE}\)
(Gợi ý cho những người không biết sin có thể làm luôn: Trong một tam giác vuông, sin góc nhọn bằng tỉ số cạnh đối chia cho cạnh huyền)
Cho tam giác ABC nhọn có 3 đường cao AD,BE,CF cắt nhau tại H.
a) Cho góc B= 450, BH=5cm. Tính AC
b) Cm: \(\sin B=\sin A\cdot\cos C+\sin C\cdot\cos A\)
c) Cho \(\tan B+\tan C=2\). Cm: BC = 2DH
Cho tam giác ABC biết AB=12cm , AC=9cm , BC=15cm.
a. Chứng minh tam giác ABC vuông
b. Tính; \(\frac{\sin B+\sin C}{\sin B-\sin C}\)
c. Tính độ dài đường cao AH
d. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. Chứng minh \(AM\cdot AB=AN\cdot AC\)
e. Chứng minh \(AH=\frac{BC}{\cot B+\cot C}\)
f. Chứng minh \(S_{AMN}=\sin^2B\cdot\sin^2C\cdot S_{ABC}\)
Giúp mk nhanh nhé mn ơi
cho tam giác ABC ,\(\widehat{A},\) <45,\(\widehat{B}\)<45
chứng minh Stam giác ABC=\(\frac{\sin\widehat{2B}\cdot BC^2+\sin\widehat{2A}\cdot AC^2}{2}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+\tan^2B=\frac{1}{\cos^2B};\tan\frac{C}{2}=\frac{c}{a+b}\)(Khỏi làm)
b) Chứng minh: AH = a. sin B. cos B, \(BH=a\cdot\cos^2B\), \(CH=a\cdot\sin^2B\)(Khỏi làm)
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
\(\sin B=\frac{AB\cdot AD+EB\cdot ED}{BA\cdot BE+DA\cdot DE}\)(Làm cái này)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+\tan^2B=\frac{1}{\cos^2B};\tan\frac{C}{2}=\frac{c}{a+b}\)(Khỏi làm)
b) Chứng minh: AH = a. sin B. cos B, \(BH=a\cdot\cos^2B\), \(CH=a\cdot\sin^2B\)(Khỏi làm)
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
\(\sin B=\frac{AB\cdot AD+EB\cdot ED}{BA\cdot BE+DA\cdot DE}\)(Làm cái này)
https://olm.vn/hoi-dap/question/1239323.html
Chứng minh nếu 1 tam giác có hai cạnh là a, b, góc nhọn tạo bởi hai cạnh đó là \(\alpha\)thì diện tích tam giác \(=\frac{1}{2}\cdot a\cdot b\cdot\sin\alpha.\)
cho tam giác abc nhọn, đường cao ah. gọi d,e làn lượt là hình chiếu của h trên ab và ac.
a) CM: \(\frac{Saed}{Sabc}=\sin^2B\cos^2C\)
b) CM \(DE=AH\sin A\)
c) AI là phân giác góc A và góc A= 60 độ
CM \(\frac{\sqrt{3}}{AI}=\frac{1}{AB}+\frac{1}{AC}\)
Giúp mình câu c