\(\triangle BEC \) vuông tại E có: \(EB^2+EC^2=BC^2\qquad (1)\) (định lý Pythagoras)
Tương tự như trên, ta có:
\(BD^2+DC^2=BC^2\qquad (2)\),
\(BD^2+DC^2=BD^2\qquad (3 )\),
\(DN^2+NC^2=DC^2\qquad(4)\),
\(EM^2+MB^2=BE^2\qquad(5)\),
\(EN^2+NC^2=EC^2\qquad(6)\).
Từ \((1)\) và \((2)\), suy ra: \(BE^2+EC^2=BD^2+DC^2(=BC^2)\).
Thay \((3)\), \((4)\), \((5)\) và \((6)\) vào đẳng thức trên, ta được:
\((ME^2+MB^2)+(EN^2+NC^2)=(DM^2+MB^2)+(DN^2+NC^2)\\ \Leftrightarrow ME^2+EN^2=MD^2+DN^2\\ \Leftrightarrow ME^2+(ED+DN)^2=(ME+ED)^2+DN^2\\ \Leftrightarrow ME^2+ED^2+2ED\cdot DN+DN^2=ME^2+2ME\cdot ED+ED^2+DN^2\\ \Leftrightarrow 2DE\cdot DN=2ME\cdot ED \Leftrightarrow DN=ME \space\text{(đpcm)}\)